If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+16x-2640=0
a = 5; b = 16; c = -2640;
Δ = b2-4ac
Δ = 162-4·5·(-2640)
Δ = 53056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{53056}=\sqrt{64*829}=\sqrt{64}*\sqrt{829}=8\sqrt{829}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8\sqrt{829}}{2*5}=\frac{-16-8\sqrt{829}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8\sqrt{829}}{2*5}=\frac{-16+8\sqrt{829}}{10} $
| 18/60=7/x | | k/2.5-2=-2.6 | | 9^2x+1=50 | | n/2.5+1.9=3.18 | | 0.6+v/2.5=1.6 | | -2(n+0.1)=-11 | | 2y+150=76 | | 2y=150-76 | | 16q=273 | | -5+3x=-5+10 | | 15y-10=15-10 | | -0.15x^2+x+1.2=0 | | 15x-66-2=90 | | 7x=38x= | | 3/4(2+5t)=12 | | X+(x+3)+(x+4)=134 | | 10=((x+1)/x) | | n+4=3.3 | | 10=(x+1/x) | | -1x+x+1x=129 | | {x|x=24} | | -0.842-2.31v=-2.69 | | 9(c-6)=30 | | -2.8(0.9+x)=-1.96 | | 2=1/2a(1.41)2 | | 7x+14=14x+28 | | -2.8-p=-8.1 | | 2x+(2x+2)=64 | | 100=0,2x+90 | | 5/6d+2/5d-1/2d=d+15-2/15d | | 2.5(-1.4+k)=5.25 | | 2x+5x+x=512 |